一、培养目标
数据与决策分析硕士专业旨在培养具备大数据分析、计量应用、决策科学等多学科的系统知识与技能,同时拥有数据思维,能够熟练运用计算模型挖掘数据,并应用于商业运营与智能决策的高端国际化、复合型人才;同时相关的计量应用和分析技能使学生能够处理和分析大数据以及开展独立的研究项目。
本专业学生应掌握系统的政治思想理论,牢固树立正确的世界观和人生观,热爱祖国,遵纪守法,品德良好,学风严谨,身心健康,具有较强的事业心和敬业精神。应熟悉我国党和国家方针政策、领会我国国情、具有全球视野、熟练使用外语、通晓国际规则、具有较强的国际竞争力。
此外,项目将培养学生一系列的实务技能,这些技能能够满足他们在未来从事不同领域的工作需求,例如科研、分析、解决问题、编程等。学生还将提高他们的演讲、交流和跨文化沟通技巧。使学生能够在国家各级气象部门、工商企业、金融机构、科研单位等部门胜任大数据采集、存储、分析与应用的相关工作。
二、培养方向
本专业围绕立德树人的根本任务,融合数据科学与计量应用两个学科的优势,培养学生运用计算机程序和软件对海量数据进行快速处理和技术性分析,并通过理论模型,优化大数据环境下的政府决策、企业战略和消费者行为。具体包括以下四个研究方向:
1. 能源与环境经济学。
2. 数字经济。
3. 信息经济学。
4. 产业经济学。
三、学制和学位
学制为 2 年。授予英国雷丁大学“数据与决策分析”理学硕士学位。
四、课程设置及学分
课程总学分为 180 学分,其中包括一系列的专业核心课程。课程设置见附表 1。
五、培养方式
研究生的培养实行“双导师制”,由雷丁大学与南京信息工程大学研究方向相近的导师共同商议确定研究课题,并在其过程中对学生进行阶段性指导。符合学位授予条件的学生将被授予英国雷丁大学“数据与决策分析”专业的硕士学位。
六、学位论文
研究生须按照英国雷丁大学的要求完成学位论文。学生要求梳理相关的文献,运用所学的分析研究方法解决其所选的经济类研究问题,并整理为一篇完整的书面论文。
在第三学期开始时,学生在中英双方导师的共同指导下,完成论文开题报告和答辩,开题报告由中英双方共同审阅。在第三学期结束前,学生须通过南京信息工程大学组织的中期考核,中期考核方式与结果由中方学位委员会商议决定。第一次未通过者,需在论文修改一个月后三个月内,再次申请中期考核。连续两次未通过者,将影响其获得南京信息工程大学结业证明的资格。研究生在第四学期结束前,完成学位论文和答辩。论文总成绩由开题报告和学位论文两部分组成,分别占比30%和70%。
七、实践教学
项目课程采用灵活、实践性的教学形式,有助于学生学习和培养他们的辩证思维。所有专业核心课均设有实践环节,除了传统课堂教学外,学生还将参与小组研讨活动,通过案例学习、小组演讲和公开辩论等形式从理论和实践方面锻炼其讨论和分析能力。
附表 1:数据与决策分析硕士研究生课程设置
学科专业 |
数据与决策分析 |
课程性质 |
课程名称 |
学时 |
南信大学分 |
雷丁大学学分 |
开课学期 |
专业核心课程 |
外方引进课程 |
必修课程 |
计量经济学分析导论 |
24 |
0 |
0 |
1 |
ü |
ü |
微观经济政策 |
96 |
6 |
20 |
1 |
ü |
ü |
计量经济学I |
96 |
6 |
20 |
1 |
ü |
ü |
数据分析与挖掘 |
96 |
6 |
20 |
1 |
ü |
ü |
宏观经济政策 |
96 |
6 |
20 |
2 |
ü |
ü |
计量经济学II |
96 |
6 |
20 |
2 |
ü |
ü |
研究方法论 |
48 |
3 |
10 |
2 |
ü |
ü |
数据安全与伦理 |
48 |
3 |
10 |
2 |
ü |
共同开发 |
中国特色社会主义理论与实践研究 |
36 |
2 |
|
3 |
|
|
自然辩证法概论 |
18 |
1 |
|
3 |
|
|
毕业论文 |
|
|
60 |
3-4 |
ü |
ü |
备注:
1. 第一年前往英国的学生,在雷丁大学学习全部课程,并在雷丁大学完成相关评估,例如课程作业和考试。
2. 第一年留在南京的学生,在南京信息工程大学学习全部课程,并在南京信息工程大学完成相关评估,例如课程作业和考试。
3. 第二年,学生全部在南京信息工程大学,由一名雷丁大学和一名南京信息工程大学导师共同指导,完成毕业论文。
Cultivation Plan for Postgraduate Students in Data and Decision Analysis
I. Training Objectives
The Master programme in Data and Decision Analysis aims to cultivate high-end international and comprehensive talents with multi-disciplinary systematic knowledge and skills in big data analysis, metrology application, decision-making science, as well as data thinking. Students can skillfully use computational models to mine data and apply them to business operation and intelligent decision-making. At the same time, relevant metrology application and analysis skills enable students to deal with and analyze big data and carry out independent research projects.
Students in the programme should master systematic political and ideological theories, firmly establish a correct outlook on world and life, love the motherland, abide by laws and regulations, have good moral character, rigorous study style, be physically and mentally healthy, and have strong entrepreneur spirit and dedication. They should be familiar with the principles and policies of our Party and country, understand our national conditions, possess a global perspective, be proficient in using foreign languages, be familiar with international rules and have great international competitiveness.
In addition, the programme will develop a range of transferable skills that can be utilized in a wide variety of future careers such as research, analysis, problem solving and programming. There will also be the opportunity to improve presentation, communication and intercultural communication skills. Graduates of this programme are expected to undertake the jobs, such as data collection, storage and analysis for institutions, such as national meteorological departments, industrial and commercial enterprises, financial institutions, and scientific research institutions.
II. Training Orientation
The programme focuses on the fundamental tasks of fostering students, and by integrating the advantages of data science and Metrology application, the programme trains students to master systematic knowledge and skills in inter-disciplines such as big data analysis, econometrics and decision science, and to analyze the data for business operations and intelligent decision-making by the use of computational models. Specifically, it includes the following four research directions:
1. Energy and Environmental Economics.
2. Digital Economics.
3. Information Economics.
4. Industrial Economics.
III. Programme Duration and Degree
The programme duration is 2 years. Graduates will be awarded the Master of Science in Data and Decision Analysis from the University of Reading, UK.
IV. Curriculum and Credits
The programme comprises of 180 credits, allocated across a range of compulsory modules. See Attached Table 1 for the detailed curriculum.
V. Training Methods
The cultivation of postgraduate students adopts the “Double Tutor System”, in which tutors with similar research area from Reading University and Nanjing University of Information Science & Technology jointly discuss and determine the students' research topics, and provide useful guidance to students in the progress. Students who meet the requirements for degree granting will be awarded Master of Science degree in “Data and Decision Analysis” from the University of Reading, UK.
VI. Dissertation
Students are required to complete their dissertations according to the requirements of the University of Reading. Students are required to study the relevant literature, use the research methodologies learned in class to solve the chosen economic problems, and finally complete an academic dissertation.
In the third term, students need to complete their dissertation proposals and defences. Proposals are jointly reviewed by NUIST and UoR. In addition, and a mid-term assessment will be conducted by NUIST. Revisions and re-assessment are required for initial non-passes. Consecutive failures affect graduation eligibility. By the end of the fourth term, students must submit the dissertation. The comprehensive evaluation of the dissertation comprises two distinct components: the proposal, which constitutes 30% of the total score, and the dissertation itself, which carries a weightage of 70%.
VII. Practical Training
Modules are delivered through flexible, hands-on teaching, helping students to learn, debate and challenge their thinking. For all subject core modules, in addition to traditional lectures, students will take part in small-group tutorials, to discuss and analyze both theory and practice through case studies, group presentations and open debate.
Attached Table 1: Curriculum for Postgraduate Students for Master of Data and Decision Analysis
Discipline and Major |
Data and Decision Analysis |
Category |
Module |
Teaching Hour |
NUIST Credit |
UoR credit |
Semester |
Core Subject Module |
Introduced Module |
Compulsory |
Introduction to Econometric Analysis |
24 |
0 |
0 |
1 |
ü |
ü |
Microeconomic Policy |
96 |
6 |
20 |
1 |
ü |
ü |
Econometrics 1 |
96 |
6 |
20 |
1 |
ü |
ü |
Data Analytics and Mining |
96 |
6 |
20 |
1 |
ü |
ü |
Macroeconomic Policy |
96 |
6 |
20 |
2 |
ü |
ü |
Econometrics 2 |
96 |
6 |
20 |
2 |
ü |
ü |
Research Methodology |
48 |
3 |
10 |
2 |
ü |
ü |
Data Securities and Ethics |
48 |
3 |
10 |
2 |
ü |
Co- developed |
Theory and Practice of Socialism with Chinese Characteristics |
36 |
2 |
|
3 |
|
|
Introduction to Dialectics of Nature |
18 |
1 |
|
3 |
|
|
|
Dissertation |
|
|
60 |
3-4 |
ü |
ü |
Note:
1. Students who come to Reading in the first year will be taught all compulsory modules by Reading staffs. Students will also complete relevant assessments such as coursework and exams at Reading.
2. Students who stay at Nanjing in the first year will be taught by NUIST staff members. Students will also complete relevant assessments such as coursework and exams at NUIST.
3. During the entire second academic year, all students will complete dissertation in stages supervised by a NUIST supervisor and a UoR supervisor.
数据与决策分析(中外合作办学)硕士研究生教学计划运行表
|
课程名称 |
学分 |
总学时 |
学时 |
自主学习 (指导下) |
每学期周学时 |
课程性质 |
授课方 |
讲课 |
实践 |
1 |
2 |
3 |
4 |
5 |
6 |
第一学期 |
计量经济学分析导论* |
0 |
24 |
12 |
|
12 |
3 |
|
|
|
|
|
必修 |
NUIST/UoR |
微观经济政策* |
6 |
96 |
48 |
16 |
32 |
6 |
|
|
|
|
|
必修 |
NUIST/UoR |
计量经济学1* |
6 |
96 |
40 |
40 |
16 |
|
6 |
|
|
|
|
必修 |
NUIST/UoR |
数据分析与挖掘* |
6 |
96 |
32 |
32 |
32 |
6 |
|
|
|
|
|
必修 |
NUIST/UoR |
|
第二学期 |
宏观经济政策* |
6 |
96 |
48 |
16 |
32 |
|
6 |
|
|
|
|
必修 |
NUIST/UoR |
计量经济学2* |
6 |
96 |
40 |
40 |
16 |
|
6 |
|
|
|
|
必修 |
NUIST/UoR |
研究方法论* |
3 |
48 |
16 |
16 |
16 |
3 |
|
|
|
|
|
必修 |
NUIST/UoR |
数据安全与伦理* |
3 |
48 |
16 |
16 |
16 |
|
3 |
|
|
|
|
必修 |
NUIST/UoR |
|
第三学期 |
中国特色社会主义理 论与实践研究 |
2 |
36 |
30 |
6 |
|
2 |
|
|
|
|
|
必修 |
NUIST |
自然辩证法概论 |
1 |
18 |
18 |
|
|
1 |
|
|
|
|
|
必修 |
NUIST |
第三-四学期 |
学位论文* |
|
|
|
|
|
|
|
|
|
|
|
必修 |
UoR + NUIST |
注:NUIST:南京信息工程大学;UoR:雷丁大学;标注“*”为专业核心课程